
Adventures in Flatland
Author: Benoît Gilon

Introduction
The points of this article are (in order):

• At first to just reply to some simple query but with some
variants about the approach chosen. The simple query is: “is
the host Apple 2 monitor (ROM based) supporting the Mini
assembler feature?”. The point here is not the result that,
given the model and ROM release version of the Apple, we
could easily derive the correct answer to that query.
Here, we will use some unusual tricks for doing so and follow
a progression1.

• Then, given the I/O architecture of the host operating system
(either DOS 3.3 or ProDOS BASIC.SYSTEM interpreter), will
extend some monitor features just by applying a simple patch
at the OS level. The example provided here is to enable 65C02
disassembly for both the “unenhanced ROM” and “enhanced ROM”
Apple //e. Currently this has been possible only by
installing an already patched monitor ROM image in language
card. The point of the article would be to offer an alternate
way aiming the same goal and usable from within DOS 3.3 and
ProDOS 8 (which kernel collides with patched monitor in
Language card memory).

• Finally and as a conclusion of this article, the third part
will assume the previous section understood by the reader and
describes how the mini assembler could be provided or at
least enhanced if already there in some related ways (that is
bringing in a full 65C02 instruction set “mini” assembler).
This can form the starting point for a future article named
“BBC inline” and providing an Applesoft based environment to
easily integrate ML and Applesoft BASIC in an unusual way.

All code presented within this article are available at the URL
below so that you won't even have to type in from the explanatory
listing within the current document.

The URL is: http://bgilon.free.fr/apple2/AdventuresInFlatland.zip

1 not unlike what happens to the square shape in the Flatland book when
encountering effects originating from the existence of a 3D world (i.e. a third
dimension in addition to the basic 2 dimensions of the planar world he lives in
since his birth) hence the article title..

http://bgilon.free.fr/apple2/FlatlandAdventures.zip
http://bgilon.free.fr/apple2/FlatlandAdventures.zip
http://bgilon.free.fr/apple2/FlatlandAdventures.zip

The archive will contain:

• a PDF export of the article text;

• a disk image (DOS 3.3 sector order) containing a working
environment for Merlin 2.48 (DOS 3.3 version) along with
every Merlin source and object files from this article: they
are:

1. FLATLANDP1S1.S (source) and FLATLANDP1S1 (binary
executable) from the 1st approach section;

2. FLATLANDP1S2.S (source) and FLATLANDP1S2 (binary
executable) from the 2nd approach section;

3. FLATLANDP1S3.S (source) and FLATLANDP1S3 (binary
executable) from the 3rd approach section;

4. FLATLANDP1S4.S (source) and FLATLANDP1S4 (binary
executable) from the 4th approach section: the binary
file can be converted and copied to a ProDOS volume for
testing under a ProDOS BI environment;

5. FLATLANDP3.S (source), FLATLANDP3xyD33 (binary executable
DOS 3.3 version) and FLATLANDP3xyP8 (binary executable
ProDOS BI version). xy being equal to PL (Apple 2 and
2+), EO (Apple //e original ROM), EE (Apple //e enhanced
ROM) or CO (Apple //c original ROM). The latter P8
executable could be transferred to a ProDOS volume for
testing under ProDOS BI.

6. An example of STARTUP.FL Applesoft file for binary
running the adequate variant of the binary executable
file according to both the resident host ROM model and
the host operating system.

• The two PDF assembly listing files for the FLATLANDP3EExyz.S
(one DOS 3.3 (xyz set to D33, one ProDOS BI (xy set to P8)).

Is the Mini assembler feature supported by my Apple 2 ROM?

First approach: checking against the ROM signature
Just to get rid of the simplest and dumbest approach here.. This
is the first routine that will check against the ROM version.

ROMREAD EQU $C081 To enable ROM reading..
COUT1 EQU $FDF0 Output subroutine

ORG $0300
START BIT ROMREAD

LDA $FBB3
EOR $FBC0
EOR $FBBF
LDY #8-1

]LOOP CMP MACMAT,Y
BEQ :1
DEY
BPL]LOOP
INY ;Apple 2+ default

:1 LDX #MES0-MESBASE
LDA MCODE,Y
BPL *+4
LDX #MES1-MESBASE

]LOOP LDA MESBASE,X
BEQ :2
JSR COUT1
INX
BNE]LOOP Always branch

:2 RTS

MACMAT HEX EA2DE6E7F9060502
MCODE HEX 00 Apple 2+
* Enhanced //e and 2GS have same signature but both
* support the Mini assembler feature..

HEX 008080 Apple //e and 2GS
HEX 00808080 Apple //c

MESBASE
MES0 HEX 8D

ASC “MINI ASSEMBLER NOT SUPPORTED”,8D00
MES1 HEX 8D

ASC “MINI ASSEMBLER SUPPORTED”,8D00
ERR *-MESBASE/256

Second approach: checking against the monitor mini assembler
character table

This approach is based upon the existence of a well known table
which is the encoding of every monitor command/pattern.

This table starts within ROM @ address which value (lo/hi format)
can be found @ address $FF7E/7F. The number of byte wide entries
be stored at address $FF79.

This table (labeled CHRTBL within the “firmware listing” part of
technical reference manuals) contains encoded values of the
original command/pattern monitor character sequence. For the
character “!” (high ascii meaning b7 set or $A1 in hexadecimal)
used to enter into the mini assembler from the monitor prompt
(“*”), the encoded value is the low byte of the value ($A1 eor
$B0) + $89, that is $9A. So what is needed for our subroutine, is
just to find a byte of value $9A within the ($FF79) bytes starting
from address ($FF7E/7F).

The listing below shows such subroutine

ROMREAD EQU $C081 To enable ROM reading..
A1L EQU $3C
COUT1 EQU $FDF0 Output subroutine
ENCVALUE = “!”!$B0+$89 Encoded value for the “!” char in
CHRTBL

ORG $0300
START BIT ROMREAD

LDA $FF7E
STA A1L
LDA $FF7F
STA A1L+1
LDY #0
LDX $FF79

]LOOP LDA (A1L),Y
CMP #ENCVALUE
BEQ :1
INY
DEX
BNE]LOOP X = 0 upon loop exit
HEX 2C Skip next two bytes

:1 LDX #MES1-MESBASE
]LOOP LDA MESBASE,X

BEQ :2
JSR COUT1

INX
BNE]LOOP Always branch

:2 RTS
MESBASE
MES0 ASC “MINI ASSEMBLER NOT SUPPORTED”,8D00
MES1 ASC “MINI ASSEMBLER SUPPORTED”,8D00

ERR *-MESBASE/256

Third approach: using a User Session Simulation (TLA is USS)
From what you've learnt from the Apple firmware study (usually
after a read or two of the famous Apple Technical Reference
Manuals), is that the system I/O redirection feature is based on
the existence of two special vectors within page zero.

One vector is used to support every output made by program
targeting an output device (usually a monitor screen but this can
be a printer if a suitable address be put into this vector): The
name of such vector is labelled CSW (and its page zero locations
are $36 and $37), which contains the address of the routine
handling the output of the character which code is in A register.
During initialization, the routine COUT1 entry point address
($FDF0) is put into those page zero locations.

Another vector is used to support every input flow that an
application requires to carry out its task (usually getting input
from the local keyboard, but this can be a serial input connected
to a modem or a mouse data sequence from a mouse interface card if
a suitable address be put into this vector). The name of such
vector is labeled KSW (and its page zero locations are $38 and
$39). During initialization, the routine KEYIN entry point ($FD1E)
is put into those page zero locations and the routine should
return with the A register as its result (value to be handled by
the application).

From within the ROM code, most of the code therein, in order to
output a character, instead of calling the COUT1 routine directly
will call the COUT entry point ($FDED) which itself is nothing
more than

COUT JMP (CSW)

The same is true for the ROM code willing to get a character from
the user and calling the RDKEY entry point ($FD0C) instead of
directly calling the KEYIN subroutine with the RDKEY being coded
as:

RDKEY LDY CH Do some trick with cursor..
LDA (BASL),Y
PHA ;The code here can vary according
AND #$3F to the ROM release..
ORA #$40 But in all cases, this is
STA (BASL),Y concluded by a JMP (KSW) instruction
PLA ; like below.
JMP (KSW)

The ROM content of every model has evolved but the legacy from the

original Apple 2 computer is still there in the latest ROM in your
ROM 03 2GS. So a quick study of the monitor evaluation loop could
bring some benefit to the reader knowledge of his computer.
One of the addresses that has never changed with consecutive ROM
revisions within the Apple // line is address $FF69 (the one run
by a classic CALL-151 from within the Applesoft prompt). Bold
instructions are the ones which will interest us in further
paragraphs.

IN EQU $0200 Monitor input buffer
COUT EQU $FDED
TOSUB EQU $FFBE
ZMODE EQU $FFC7
PROMPT EQU $33
YSAV EQU $34

FF65 MON CLD
JSR BELL

FF69 MONZ LDA #”*”
STA PROMPT
JSR GETLNZ
JSR ZMODE

FF73 NXTITM JSR GETNUM Get next non hexa. item
STY YSAV
LDY #$17

FF7A]LOOP DEY
BMI MON
CMP CHRTBL,Y
BNE]LOOP
JSR TOSUB Call corresponding subroutine
LDY YSAV
JMP NXTITM

FF3A BELL LDA #$87 Code for Dring
JMP COUT

CANCEL LDA #$DC “\” after cancelled line
JSR COUT

FD67 GETLNZ JSR CROUT
FD6A GETLN LDA PROMPT

JSR COUT
LDX #1

BCKSPC TXA
BEQ GETLNZ
DEX

NXTCHAR JSR RDCHAR
CMP #$95 Right arrow?

BNE CAPTST
LDA (BASL),Y

CAPTST CMP #$E0
BCC ADDINP
AND #$FF

FD84 ADDINP STA IN,X
CMP #$8D
BNE NOTCR
JSR CLREOL Clear to end of line

FD8E CROUT LDA #$8D
BNE COUT

FD3D NOTCR LDA INVFLG
PHA
LDA #$FF
NOP
NOP
LDA IN,X
JSR COUT
PLA
STA INVFLG
LDA IN,X
CMP #$88 Left arrow?
BEQ BCKSPC
CMP #$98 Control-X?
BEQ CANCEL

So, if you update the CSW vector within page zero and testing on
the new user routine the value output from the program. It is easy
to check whether or not the mini assembler is ROM resident. Just:

• put the two characters $A1 (“!”) and $8D (carriage return) to
IN and IN+1 address, set X to 1;

• jump to the address at $FF70

• Here is the sample new user output routine:
MYCOUT CMP #$87 This is from the JSR BELL at address
$FF66

BEQ :NOK
* The $A1 comes from the JSR COUT at address $FD6C while
* the prompt (pz0 $33) is set to “!”

CMP #$A1
BEQ :OK
RTS ;Discard any other output characters

The following code extract is an illustration of the complete
mechanism.

ROMREAD EQU $C081 To enable ROM reading..
PROMPT EQU $33
CSWL EQU $36
CSWH EQU $37
IN EQU $0200
COUT1 EQU $FDF0 Output subroutine

ORG $0300
START BIT ROMREAD

LDA CSWH
PHA
LDA CSWL
PHA
LDA PROMPT
PHA
LDA #MYCOUT
STA CSWL
LDA #>MYCOUT
STA CSWH
LDA #”!”
STA IN
LDA #$8D
STA IN+1
TSX ;Save the stack pointer
STX STKINIT to be restored from within MYCOUT
LDX #1
JMP $FF70

MYCOUT CMP #”!”
BEQ :OK
CMP #$87
BEQ :NOK
RTS ;Discard any othrer character

:NOK LDY #0
HEX 2C Skip next two bytes

:OK LDY #MES1-MESBASE
LDX STKINIT Restore stack pointer
TXS
PLA And updated pz0 cells..
STA PROMPT from stack..
PLA
STA CSWL
PLA
STA CSWH

]LOOP LDA MESBASE,Y

BEQ :2
JSR COUT1
INY
BNE]LOOP

:2 RTS
MESBASE
MES0 ASC “MINI ASSEMBLER NOT SUPPORTED”,8D00
MES1 ASC “MINI ASSEMBLER SUPPORTED”,8D00

ERR *-MESBASE/256
STKINIT DS 1
If you like, you might want to also simulate user data entry into
the monitor by replacing the KSW vector.. see the FLATLANDP1S3.S
Merlin source file for details about how to do that...

Fourth approach: dwelling with host operating systems
I/O redirection

Hereby we will take the third approach described in the previous
section as the basis, but instead of doing a simple CSW/KSW
replacement, we consider the fact that the OS has already put its
own vectors into CSW and KSW, saving the user vectors somewhere
within the DOS/ProDOS data memory segment.

So, instead of saving the CSW and KSW contents onto stack
directly, we will save (i.e. push onto stack) the content of those
memory slots containing the true vector owners from a user point
of view. Also, at the conclusion of putting our own value in the
pz0 locations, a call to some OS routine will both save them in
dedicated memory area with OS memory and replace their p0
locations with OS own intercept vectors. This is this mechanism
that allow “in fine” the Apple 2 to be “responsive” as a user has
entered a DOS/ProDOS command either at the Applesoft prompt (“]”)
or within a program text (by prefixing the output string with a
CHR$(4) character).

The table below will provide details about where the true vector
addresses are stored and the subroutine entry point to call to
reinstate DOS interception vector in page zero.

What DOS 3.3 ProDOS 8 BI (all
versions)

Where CSW true user
routine vector
address is stored

$AA53/54 $BE30/31

Where KSW true user
routine vector
address is stored

$AA55/56 $BE32/33

Subroutine entry
point to call for
reinstating DOS
intercepts

$A851 (DOS 3.3 48K
slave January 1983)
or $03EA (vector in
page 3: all versions)

SAVIOTRU ($9A8D)

Here is the resulting source code (handling both DOS 3.3 and
ProDOS 8 BI environments).
* Hardware equates
TXTPAG1 EQU $C054
TXTPAG2 EQU $C055
RDINTCXR EQU $C015 b7 set if internal ROM active
SLTCXROM EQU $C006 C1-C7 pages to slot ROMs

INTCXROM EQU $C007 C1-C7 pages to internal ROMs
* Monitor equates
CSWL EQU $36
CSWH EQU $37
KSWL EQU $38
KSWH EQU $39
WNDLFT EQU $20
WNDWDTH EQU $21
CH EQU $24
BASL EQU $28
PROMPT EQU $33
* My own equates
AUXPTR EQU $06
* DOS 3.3 equates
DTRUCSW EQU $AA53 Where the true CSW owner address is
stored
DTRUKSW EQU $AA55 Same for KSW
INITPTRS EQU $03EA Address to call to reestablish OS control
* ProDOS BI equates (all versions)
PTRUCSW EQU $BE30 Where the true CSW owner address is
stored
PTRUKSW EQU $BE32 Same for KSW
SAVIOTRU EQU $9A8D Address to call to reestablish BI control
PSAVAREA EQU $BE3E Placeholder for storing registers

DUMMY PSAVAREA
PREGA DS 1
PREGX DS 1
PREGY DS 1

DEND
* 80 col. Firmware equates
OURCH EQU $057B
* We cannot place the new ML routine in page 3 anymore
* (not enough space), so instead, the program loads at
* address $2000, which leaves pages $08 to $1F for potential
* Applesoft program text which would not be disturbed by
* running this small test.

ORG $2000
START LDX #0

CLC
* For ProDOS BI to be detected, value $4C must be
* on the five bytes starting at $BE00 up to $BE0E
* with a step of +3..
]LOOP LDA $BE00,X

EOR #$4C

BNE :1
INX
INX
INX
CPX #$0F
BCC]LOOP

:1 LDX #1
ROR
STA ISPRODOS Only b7 is meaningful here
BMI *+3 ;Branch iif ProDOS 8 BI
DEX
STX IDOS

* In the Enhanced Apple //e, the path to mini assembler
* points to an address in page $C1 and the INTCXROM status
* is not restored until return to monitor..
* Thus we have to save the original status of the softswitch
* and restore it back to its original setting while quitting
* before the mini assembler returns itself to monitor.

LDA RDINTCXR
STA MINTCXR
LDA TOFB,X base address is $AA53
STA AUXPTR for DOS 3.3
LDA TOFT,X and $BE30
STA AUXPTR+1 for ProDOS BI (all versions)

* Store the true CSW/KSW owner addresses onto stack.
LDY #4-1 2 bytes for CSW, 2 bytes for KSW

]LOOP LDA (AUXPTR),Y
PHA
DEY
BPL]LOOP
LDA PROMPT
PHA

* All the PHA operations below are to properly handle the
* CLREOL operation performed from within the GETLN processing
* as a $8D (carriage return) key is pressed at the keyboard.

LDA CH
PHA
LDA OURCH
PHA
LDA WNDLFT
PHA
LDA WNDWDTH
PHA
LDX $C01D RDHIRES

BIT $C056 HIRESOFF
STA $C001 80STORON
LDY #0
BIT TXTPAGE1
LDA (BASL),Y
PHA
BIT TXTPAGE2
LDA (BASL),Y
PHA
BIT TXTPAGE1
TXA
BPL *+5
BIT $C057 HIRESON

* Backup our stack pointer to be restored @ the MYCOUT
* subroutine level

TSX
STX STKINIT

* Do our own stuff as per the previous code sample..
LDA #MYCOUT
STA CSWL
LDA #>MYCOUT
STA CSWH
LDA #”*”
STA PROMPT
LDA #MYRDKEY
STA KSWL
LDA #>MYRDKEY
STA KSWH
LDY #0
STY IDX

* The few lines below just to properly handle the CLREOL
* We simulate a CH value of zero, a WNDLFT value of zero,
* a WNDWDTH value of 1 so that to minimize the screen area
* written to by the CLREOL processing within the video
* firmware (either 40 col. Or 80 col.) called by GETLN.

STY CH
STY WNDLFT
INY
STY WNDWDTH

* Save OS entry context into private area to be restored later
JSR STORAUX

]LOOP LDA (AUXPTR),Y
STA MSAVAR,Y
DEY

BPL]LOOP
CLC ;Full reconnect here..
JSR COMREDIR Reconnect installed DOS..
JMP $FF6D Run monitor! But get back soon…

MYRDKEY LDX IDX
LDA INPUT,X
INC IDX
RTS

MYCOUT CMP #”!”
BNE *+6
CMP PROMPT
BEQ :OK
CMP #$87
BEQ :NOK
RTS

:NOK LDY #MES0-MESBASE
HEX 2C Skip next two bytes

:OK LDY #MES1-MESBASE
LDX STKINIT
TXS
LDY $C01D RDHIRES
BIT $C056 HIRESOFF
STA $C001 80STORON

* All the PLA operations below are to properly handle the
* CLREOL operation performed from within the GETLN processing
* as a $8D (“carriage return/enter”) key is pressed at the
* keyboard.

LDX #0
PLA
BIT TXTPAGE2
STA (BASL,X)
PLA
BIT TXTPAGE1
STA (BASL,X)
TYA
BPL *+5
BIT $C057 HIRESON
PLA
STA WNDWDTH
PLA
STA WNDLFT
PLA
STA OURCH
PLA

STA CH
PLA
STA PROMPT

* Pop the four bytes forming the CSW and KSW values
* and stores them in proper cells within page zero

LDX #0
]LOOP PLA

STA CSWL,X
INX
CPX #4
BCC]LOOP
TYA
PHA
LDY #MESMA-MESBASE
JSR PRMSG Print 8D,”MINI ASSEMBLER “
PLA
BNE :0
TAY
JSR PRMSG Print “NOT “

:0 LDY #MES1-MESBASE
JSR PRMSG Print “SUPPORTED”,8D
JSR STOAUX

]LOOP LDA MSAVAR,Y
STA (AUXPTR),Y
DEY
BPL]LOOP

* Restore the SLT/INTCXROM status
STA SLTCXROM
BIT MINTCXR
BPL *+5
STA INTCXROM
SEC

* Whichever is the installed OS, let it control the I/O
* redirection..
COMREDIR BIT ISPRODOS

BMI *+5
JMP INITPTRS Reestablish DOS 3.3 control over I/O
JMP SAVIOTRU Reestablish BI control over I/O
BCC :0
LDX #4-1

]LOOP LDA PTRUCSW,X
STA CSWL,X
DEX
BPL]LOOP

LDA #$88 Backspace/left arrow
LDX #0 Already at 1st postion within INBUF
LDY PREGY
STA PREGA
STX PREGX

:0 RTS
* Subroutine to print a message thru a non vectored ROM routine
PRMSG LDA MESBASE,Y

BEQ :2
JSR COUT1
INY
BCC PRMSG
RTS

* Subroutine to store OS save area gein address to AUXPTR
STOAUX LDX IDOS

LDA TSVB,X
STA AUXPTR
LDA TSVT,X
STA AUXPTR+1
LDY TLENM1,X
RTS

* Subroutine substitute for ROM KEYIN: could'nt be simpler
MYRDKEY LDX IDX

LDA INPUT,X
INC IDX
RTS

MESBASE
MES0 ASC “NOT “,00
MES1 ASC “SUPPORTED”,8D00
MESMA HEX 8D

ASC “MINI ASSEMBLER ”,00
ERR *-MESBASE/256

TOFB DFB DTRUCSW, PTRUCSW
TOFT DFB >DTRUCSW, >PTRUCSW
* 3 tables below for keeping track of the CPU registers set
* upon entry to DOS/BI
TLENM1 DFB 4-1,3-1 length of actual table minus 1.
TSVB DFB DSAVAREA,PSAVAREA
TSVT DFB >DSAVAREA,>PSAVAREA
INPUT HEX A18D “!” character followed by EOL.
MSAVAR DS 4 Private area for register set on DOS ent.
STKINIT DS 1 To keep track of working stack pointer
IDX DS 1
ISPRODOS DS 1

IDOS DS 1
MINTCXR DS 1

65C02 instructions in monitor disassembly listings

Introduction
Now that we have answered a basic query such as “Does the ROM
resident monitor support the mini assembler feature?”, it is time
to trick the system by extending ROM based features with extra
features that you surely would have like to be there from the
start.

Having upgraded your non enhanced //e with an “upgrade kit”, the
first thing you want to try out is whether the disassembler is now
supporting your new CPU instruction set. Hélas (in French in the
text), the output below will surely frighten you a bit:
]CALL -151
*300:80 FE N 300L

0300- 80 ???
0301- FE FF FF INC $FFFF,X
0304- FF ???

$80 is the OpCode for the BRA <relativeAddress>

The transparency of such patch will be an important aspect of such
patch. After having binary run the patch, and trying again:

]BRUN FLATLANDP2D33
]CALL -151
*300:80 FE N 300L

0300- 80 FE BRA $0300
0302- FF ???
One might object that there is a current way of obtaining this
feature and is used by storing in the Language card (from address
$F800 to $FFFF) an already patched copy of the monitor. The
SOURCEROR disassembler (by Glen Bredon) is provided with a
MON65C02 file that copied itself to LC for doing so and thus
allowing SOURCEROR to output the whole 65C02 instruction set at
its text stream output (disassembly).

FLATLANDP2 aim is to be used both for DOS 3.3 and for ProDOS BI,
therefore, instead of putting its stuff in LC, will occupy a small
memory segment within main 48K memory2.

2 “Elegance, elegance above all” Clive Sinclair

ROM monitor study (all Apple 2 models)

When KSW is reached while in monitor entry phase, the stack will
look like the one below:

Index within
stack

Content Comment

S + 6 $FF HiByte($FF6F) that is the location where
GETLNZ is called from main monitor loop.

S + 5 $6F LoByte($FF6F)

S + 4 $FD HiByte($FD77) that is the location where the
RDCHAR/ESCRDKEY is called from GETLN routine

S + 3 $77 LoByte($FD77)

S + 2 vH Intermediary routine in charge of calling
RDKEY: HiByte

S + 1 vLo Intermediary routine in charge of calling
RDKEY: LoByte

S Next location to be used by subsequent PUSH

The values for vHi/vLo have different values according to the
Apple 2 model.

Apple 2 ROM model vHi/vLo

//e unenhanced $FD37

][and][plus $FD37

Enhanced //e $FD37

Original //c $CCF4

What will be performed at Keyboard intercept step from with OS is
to substitute the two locations (S + 5, S + 4) to #>MyOwnRoutine,
#<MyOwnRoutine whenever the stack on entry follows the layout
given above.

DOS 3.3 patch

Here is the original keyboard intercept routine from DOS 3.3. Only
the line marked as such will be updated per the patch.
KBDINTRC JSR SAVREG

LDA CURSTAT
BEQ :2 Branch iif not coldstarting or reading a file

PHA
LDA ASAVE
STA (BASL),Y
PLA
BMI :1 If coldstarting..
JMP READBYTE read a byte from file

:1 JSR FIRSTIME $9D0A
LDY CH
LDA #$60
STA (BASL),Y

:2 LDA EXCFLG Will be replaced with a JSR PX
BEQ :3
JSR EXERD

:3 LDA #3
STA CSWSTATE
…

* Somewhere within the dedicated memory segment
PX LDA PROMPT

CMP #”*”
BNE :1
LDX SSAVE
LDY #5

]LOOP INX
LDA $0100,X
EOR STKL,Y
BNE :1
DEY
BPL]LOOP
LDA #>MyOwnRoutine
STA $0100,X
DEX
LDA #MyOwnRoutine
STA $0100,X

:1 LDA EXFLG
RTS

STKL HEX FF6FFD77FD37 Those values for //e,][and][+

I'll not describe here the necessary patch details required for
initing an unpatched DOS image whenever the user issues an INIT
command. Please consult the source file for such information to
the attention of interested readers.

ProDOS BI patch
A similar approach to the one related to DOS 3.3 could be adopted
for ProDOS BI.

KBDINCPT EQU *
KSTATE0 BIT EXACTV

BPL :1
JSR REGSAV Will be replaced with JSR PX
JMP EXECREAD

:1 JSR SETIOTRU
JSR RDKEY+4
CMP #cr
BNE KBDEXIT
JSR REGSAV Will be replaced with JSR PX
STA INBUF,X
…

PX JSR REGSAV
LDA PROMPT
CMP #”*”
BNE :1
TSX
INX ;Pass above the caller return address
INX
LDY #5

]LOOP INX
LDA $0100,X
EOR STKL,Y
BNE :1
DEY
BPL]LOOP
LDA #>MyOwnRoutine
STA $0100,X
DEX
LDA #MyOwnRoutine
STA $0100,X

:1 JMP REGRST
STKL HEX FF6FFD77FD37 Those values for //e,][and][+

Flatland part 2: a user manual

Flatland DOS 3.3 and ProDOS BI share the same source file
FLATLANDP2.S which can be assembled in Merlin 8 (v2.48).

Two possible object files result from such assembly:

• FLATLANDP2D33 which can directly be run from within DOS 3.3;

• FLATLANDP2P8, which is the ProDOS BI version, has to be
copied to a ProDOS volume by using either a COPY 2+ aoftware
or the Apple CONVERTER system program from the ProDOS disk or
using the DOP companion utility (exchanging files between DOS

and ProDOS from the DOS side).

The version assembled is set according to the OPTBI label's value
at the beginning of the source file.

Both versions use a safe guard against lockups caused by extra
installation of the same patch within either DOS or ProDOS BI.

]BRUN FLATLANDP2D33
]BRUN FLATLANDP2D33
It seems that this patch or another
similar is already installed

]

Also if you try to install this patch on an Apple 2 model which
ROM monitor already supports 65C02 instruction set disassembly, an
adequate message is displayed and installation is canceled.

]BRUN FLATLANDP2D33
Your Apple already supports disassembly
of 65C02 instructions within its ROM.
There is no need to install this patch!

]

Thus the patch can only be installed on an Apple //e (original or
enhanced ROM) or an Apple 2 or 2+. All other Apple model support
this feature.

The ProDOS BI version installs itself by calling the GETBUFR
system wide memory allocation routine from ProDOS BI (2 pages are
claimed). If such request could not be satisfied, then a message
is returned to the user.

]BRUN FLATLANDP2P8
Not enough memory to install
this patch!

]

Once the patch is installed, you can load object modules which you
know include some 65C02 instructions just to test their proper
disassembly format..

]BLOAD TESTDIS
]CALL-151

*300L

0300- DA PHX
0301- FA PLX
0302- 5A PHY
0303- 7A PLY

0304- 1A INC
0305- 3A DEC
0306- 80 FE BRA $0306
0308- 89 FF BIT #$FF
030A- 64 00 STZ $00
030C- 9C FF FF STZ $FFFF
030F- 74 00 STZ $00,X
0311- 04 00 TSB $00
0313- 0C FF FF TSB $FFFF
0316- 14 00 TRB $00
0318- 1C FF FF TRB $FFFF
031B- 7C 00 10 JMP ($1000,X)
031E- 72 06 ADC ($06)
0320- 32 06 AND ($06)
0322- D2 06 CMP ($06)
0324- 52 06 EOR ($06)

*L

0326- B2 06 LDA ($06)
0328- 12 06 ORA ($06)
032A- F2 06 SBC ($06)
032C- 92 06 STA ($06)
032E- 00 BRK
...

Here are the monitor's major missing features matrix per Apple ROM
model. Just to remind ourselves that there are many cases which
still indicate a No string pattern and that there might be
features not listed which might be listed according to your
priorities (e.g. the memory multi bank display, copy and verify in
case you have a A.E. RAMWorks compatible board).

A
p
p
l
e

/
/

R
O
M

v
e
r
s
i
o
n

D
i
s
a
s
s
e
m
b
l
y

M
i
n
i

a
s
s
e
m
b
l
e
r

S
t
e
p

T
r
a
c
e

Apple 2 Integer
6502
now
65C02

Yes but
6502 only

Yes Yes

Apple 2+
6502
now
65C02

No No No

Apple //e original
ROM

6502
now
65C02

No No No

Apple //e enhanced
ROM

6502
now
65C02

6502 only

No
(replaced

by a
SEARCH
feature)

No

Apple //e debug ROM 65C02 65C02 Yes Yes

Apple //c original
ROM

65C02 No No No

Apple //c Unidisk
3.5 ROM

65C02 65C02 Yes Yes

Apple //c memory
expanded ROM

65C02 65C02 Yes Yes

Apple //c revised
memory expanded ROM

65C02 65C02 Yes Yes

Apple 2GS ROM 0 65816 65816 Yes Yes

Apple 2GS ROM 1 65816 65816 Yes Yes

Apple 2GS ROM 3 65816 65816 Yes Yes

Flatland part 3: rebirth of the mini (the
assembler not the british car ;-))

Introduction

Just to show the reader how easy it is to start from the point
left in our previous part (whole 65C02 instruction set
disassembled despite unsupported by ROM resident monitor), in
order to be able to mini assemble the whole 65C02 IS. Here is the
broad description of how to use this feature.

The mini assembler is available by issuing a “!” command character
at the monitor prompt. From this on, the user can manually
keyboard enter the 65C02 mnemonics (and not only 6502) and the
assembly will take over in order to replace the user entry with a
disassembled view of this instruction. Details can be covered at
the Apple //e and //c TRM as well as in the 2GS firmware manual.

Readers can also get their hand on the WOZPAK (second edition) by
published by callapple.org. If we get a look at the feature matrix
first shown in the article previous part. Below is the new vision
of the features supported per ROM model. In addition to the
features that part 2 brought in (marked as P2 in column labelled
“Disassembly), the new features are in bold style.

A
p
p
l
e

/
/

R
O
M

v
e
r
s
i
o
n

D
i
s
a
s
s
e
m
b
l
y

M
i
n
i

a
s
s
e
m
b
l
e
r

S
t
e
p

T
r
a
c
e

Apple 2 Integer
65C02
(P2)

Was 6502
only, now
supports
65C02

Yes Yes

Apple 2+
65C02
(P2)

65C02 No No

Apple //e original
ROM

 65C02
(P2)

65C02 No No

Apple //e enhanced
ROM

65C02
(P2)

Was 6502
only, now
supports

No
(replaced

by a

No

65C02
SEARCH
feature)

Apple //e debug ROM 65C02 65C02 Yes Yes

Apple //c original
ROM

65C02 65C02 No No

Apple //c Unidisk
3.5 ROM

65C02 65C02 Yes Yes

Apple //c memory
expanded ROM

65C02 65C02 Yes Yes

Apple //c revised
memory expanded ROM

65C02 65C02 Yes Yes

Apple 2GS ROM 0 65816 65816 Yes Yes

Apple 2GS ROM 1 65816 65816 Yes Yes

Apple 2GS ROM 3 65816 65816 Yes Yes

Flatland part 3 mini user manual

For this part 3 to be very easily tailored from a user point of
view, this small Applesoft program (File STARTUP.FL in the disk
image) could be used to automatically install the patch version
per ROM model and per host operating system (either DOS 3.3 or
ProDOS 8 BI).

 0 GOTO 10
 1 DEF FN V(VP) = (VP < 58) * (VP - 48) + (VP > 64) * (VP - 55): RESTORE: RETURN
 2 FOR IC = 1 TO LEN (P$) STEP 2:VX = FN V(ASC (MID$ (P$,IC,1))) * 16 + FN V(ASC (MID$
(P$,IC + 1,1)))
 3 POKE PT,VX:PT = PT + 1: NEXT IC: RETURN
 4 B = 0: FOR PT = 48640 TO 48652 STEP 3:B = PEEK (PT) < > 76: ON NOT B GOTO 5:PT = 48652
 5 NEXT PT:S$ = "D33": ON B GOTO 6:S$ = "P8"
 6 RETURN
 10 HOME : GOSUB 1:PT = 769: FOR I = 0 TO 1 STEP 0: READ P$: ON LEN (P$) > 0 GOTO 20:I = 1
 20 IF NOT I THEN GOSUB 2
 30 NEXT I
 31 DATA A007ADB3FB4DC0FB4DBFFBD94003F0048810F8C8
 32 DATA C002D023AD5CFCC9EBD01CA00818FB08C230201FFE
 33 DATA 8C800328FBA00CAD8103D006AD80030908A88C000360
 34 DATA EA2DE6E7F9060502
 39 DATA ""
 40 CALL 769:RY = PEEK (768): IF RY > 11 THEN RY = 11

 41 FOR I = - 1 TO RY - 1: READ P$: NEXT : READ P$: IF LEFT$ (P$,1) = "/" THEN P$ =
CHR$ (8) + P$
 42 PRINT "MODEL DETECTED: APPLE 2"P$: FOR I = 0 TO 1: READ P$:I = LEN (P$) = 0: NEXT
 43 DATA ""," OR 2+","//e original ROM","//e enhanced ROM","//e debug ROM"
 44 DATA "//c original ROM","//c Unidisk 3.5 ROM","//c Memory expansion ROM","//c Revised memory
expansion ROM”
 45 DATA "GS ROM0","GS ROM1","GS ROM3","Future GS",""
 50 GOSUB 4: FOR I = - 1 TO RY - 1: READ P$: NEXT : READ NF$
 51 ON LEN (NF$) > 0 GOTO 52: PRINT "There is no need to run the FLATLAND": PRINT "patch on your
Apple computer": END

 52 NF$ = "FLATLANDP3" + NF$ + S$
 55 DATA "","PL","EO","EE","","CO","","","","","",""
 60 CV = PEEK (37): PRINT CHR$ (4)"BRUN "NF$: ON PEEK (37) > CV GOTO 70:NF$ = "Flatland patch
install complete": ON RY > 0 GOTO 61:NF$ = "FLATLAND PATCH INSTALL COMPLETE"
 61 PRINT NF$
 70 END

From the study of the FLATLANDP3.S Merlin source file, you'll find out that The
version built (see the SAV sequence at the end of the assembly) depend on two
label values, the OPTBI could be set to either 0 (DOS 3.3) or 1 (ProDOS BI) and
the ROMMODEL could be set to one of those string (R2P, R2E, R2EE or R2CO).

Flatland part3 conclusion

Here we've reached a point where all Apple computers have a mini assembler
(either ROM resident, or being somewhere within the main 48K RAM) in order to
support the BBC inline macro assembler feature which will be covered in a future
article. I do not have any clone on hand, and so we'll be happy to hear from
brave hobbysts who adapted this mechanism to exotic architectures.

